Integrated Simulation for Rapid Development of Autonomous Underwater Vehicles

نویسندگان

  • Donald P. Brutzman
  • Yutaka Kanayama
  • Michael J. Zyda
چکیده

The development and testing of Autonomous Underwater Vehicle (AUV) hardware and software is greatly complicated by vehicle inaccessibility during operation. Integrated simulation remotely links vehicle components and support equipment with graphics simulation workstations, allowing complete real-time, pre-mission, pseudo-mission and post-mission visualization and analysis in the lab environment. Integrated simulator testing of AUV software and hardware is a broad and versatile method that supports rapid diagnosis and robust correction of system faults. Pre-mission simulator AUV testing permits experimental evaluation of developmental software. Pseudo-mission simulator testing of AUV processes employs an identical laboratory microprocessor or remote communication with a testbench-mounted operating AUV, permitting end-to-end testing of all software and hardware. Post-mission simulator playback of recorded telemetry, sensor data and system state transitions supports in-depth reenactment, playback and analysis of in-water operational results. High-resolution three-dimensional graphics workstations can provide real-time representations of vehicle dynamics, control system behavior, mission execution, sonar processing and object classification. Use of well-defined, user-readable mission log files as the data transfer mechanism allows consistent and repeatable simulation of all AUV operations. Examples of integrated simulation are provided using the Naval Postgraduate School (NPS) AUV, an eight foot, 387-pound untethered robot submarine designed for research in adaptive control, mission planning, mission execution, and post-mission data analysis. The flexibility, connectivity and versatility provided by this approach enables sophisticated visualization and analysis of all aspects of AUV development. Integrated simulator networking is recommended as a fundamental requirement for comprehensive and rapid AUV research and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Investigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles

Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...

متن کامل

An integrated development process for automated or driver- assist vehicles

We describe the methodology, tools and technologies for designing and implementing communication and control systems for networked automated or driver assist vehicles. In addressing design, we discuss enabling methodologies and our suite of enabling computational tools for formal modeling, simulation, and implementation. We illustrate our description with design, development and implementation ...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992